Production of ECCO-GODAE ocean state estimates and their application to studies of decadal variability

P. Heimbach¹, G. Forget¹, I. Fenty¹, M. Mazloff², R.M. Ponte⁴, and C. Wunsch¹

1: MIT, EAPS, Cambridge, MA, USA

2: SIO, UCSD, La Jolla, CA, USA

3: AER, Lexington, MA, USA

Estimating the Circulation and Climate of the Ocean (ECCO)

http://ecco-group.org

http://mitgcm.org

Outline

- 1. ECCO-GODAE goal: dynamically consistent state estimation via Lagrange multiplier method (closed property budgets)
- 2. Application of the decadal production (1992-2007) to sea-level
- 3. Application for observing system design
- 4. Application for sensitivity studies
- 5. Toward the coupled ocean/sea-ice problem
- 6. Toward higher-resolution

State estimation - an early vision, ca. 1982:

Acoustic Tomography and Other Answers

Figure 26. All measurements and models of the ocean can be interconnected to provide global estimates of the state of the three-dimensional ocean. Some side benefits accrue — e.g. improved estimates of the earth's gravity field.

Taken from: *C. Wunsch*, in "A Celebration in Geophysics and Oceanography 1982. In Honor of Walter Munk on his 65th birthday."

C. Garrett and C. Wunsch, Eds., SIO Reference Series 84-5, March 1984

Ocean State Estimation

The observations

observation	instrument	product	area	period	dT	#
Mean dynamic topography (MDT)	• GRACE GGM02 • GRACE SM004-GRACE3	U-Texas (B. Tapley) CLS/GFZ (A.M. Rio)	global global	time-mean	time-mean	3.2E4
Sea level anomaly (SLA)	• T/P, Jason • ERS, ENVISAT • GFO	PO.DAAC AVISO NOAA, USN	66°N/S 82°N/S 65°N/S	1992 - 2006 1992 - 2006 2001 - 2004	daily daily daily	1.7E7 1.2E7 6.6E6
SST	blended, AVHRR (O/I)TRMM/TMIAMSR-E (MODIS/Aqua)	Reynolds & Smith (1999) NASA, NOAA NASA, NOAA	Global 40°N/S	1992 - 2006 1998 - 2003 2001 - 2006	monthly monthly monthly	6.5E6 2.9E6
SSS	In-situ, ships	ECOP (France)	Pacific	1992 - 1999	monthly	2.4E4
In-situ T, S	Argo, P-AlaceXBTCTDSEaOSTOGA/TAO, Pirata	Ifremer, S. Behringer (NCEP) Various SMRU & BAS (UK) PMEL/NOAA	"global" "gobal" sections SO Trop. Pac.	2003 - 2006 1992 - 2006 1992 - 2006 1992 - 2006	daily daily daily daily daily	2.1E7 1.0E7 2.0E6 5.2E5 3.3E6
Mooring velocities	• TOGA/TAO, Pirata • RAPID	PMEL/NOAA SOC (UK)	Trop. Pac. N. Atl.	1992 - 2006 3/2004 - 5/2005	daily daily	2 x 1.1E6
Climatological T,S	• WOA01 (upper 300 m) • WOCE	Conkright et al., 2002 Gouretski & Koltermann, 2004	"global" "global"	1950 - 2000 1950 - 2002	time-mean time-mean	2 x 8.1E6
Wind stress	QuickScat	NOAA, NASA	global	1999 - 2004	2-day	2 x 4.7E6
Tide gauge SSH	Tide gauges	NBDC/NOAA	sparse	1992 - 2006	monthly	5.5E4
Flux constraints	NCEP/NCAR variances	Kalnay et al., 1997	global	1992 - 2006	2-day	4 x 2.0E8
Balance constraints			global	1992 - 2006	time-mean	2 x 3.6E5
bathymetry		Smith & Sandwell, ETOPO5	global	-	-	lllii.

Data assimilation: The estimation (interpolation) vs. the forecasting (extrapolation) problem

Atmosphere

- Relatively abundant data sampling of the 3-dim. atmosphere
- Most DA applications target the problem of optimal forecasting
- → find initial conditions which produce best possible forecast;
- → no dynamical consistency required on climate time scales

Ocean

- Very sparse data sampling of the 3-dim. ocean
- Trying to understand the past & present state of the ocean is a major issue all by itself, the forecasting maybe secondary (note also the comparatively slow timescales of oceanic processes)
- → use available observations in an optimal way to extract information about the ocean state
- → dynamic consistency essential over climate time scales

Why does it matter: (Huge) imbalances in (all) atmospheric "re-analysis" products

Need to remove air-sea flux imbalances

	$_{ m mean}$	intercept	$_{ m slope}$
	[cm/year]	$[\mathrm{mm/sec}]$	$[\mathrm{mm/sec^2}]$
NCEP/NCAR-I ocean $E-P$	15.1	4.90E-9	9.29E-12
NCEP/NCAR-I ocean $E - P - R$	6.2	1.92E-9	9.29E-12
NCEP/NCAR-I global $E-P$	6.1	$\sim 1.90\text{E-9}$	5.14E-12
NCEP/DOE-II global $E-P$	-73.9	\sim -19.00E-9	-740.00E-12

Application: Decadal sea-level patterns and their top-to-bottom partition

- Vertical partition in density trends due to
 - trends in temperature T
 - trends in salinity \$
 - trends in T, S

Wunsch et al., 2007 (J. Clim.): Decadal trends in sea level patterns

Observing system experiments (OSE): Exploring state estimation systems to assess observation impact

Rationale:

evaluate impact of different observing types, as well as their spatiotemporal distributions

- In particular, focus on
 - role of elements of the global observing system (altimetry, satellite SST, Argo)
 - impact on climate diagnostics, here MOC

· Approach:

- data withholding experiments using the ECCO state estimation system
- based on 1-yr experiments to limit sampling-related issues

An aside:

 Extensive use and (more advanced) approaches in the context of numerical weather prediction (NWP)

Observing system experiments (OSE): Exploring state estimation systems to assess observation impact

RMS variability differences in MOC from state estimates using different data ingredients (baseline B is an estimate that is fit to only hydrographic climatology, WOA01)

Notation: j | B,x,y,...: j is newly added data to prior B, x, y, ...

► Finite difference approach:

- Take a "guessed" anomaly (SST) and determine its impact on model output (MOC)
- Perturb each input element (SST(i, j)) to determine its impact on output (MOC).

Impact of *one input* on *all outputs*

► Reverse/adjoint approach:

- Calculates "full" sensitivity fi eld $\frac{\partial \operatorname{MOC}}{\partial \operatorname{SST}(x,y,t)}$
- Approach:

Let
$$\mathcal{J} = \text{MOC}, \vec{u} = \text{SST}(i, j)$$

$$\longrightarrow \overrightarrow{\nabla}_u \mathcal{J}(\vec{u}) = \frac{\partial \operatorname{MOC}}{\partial \operatorname{SST}(x,y,t)}$$

Sensitivity of **one output** to **all inputs**

Example: Meridional heat transport sensitivities to temperature perturbations at various depths

Example: Adjoint sensitivity of solid freshwater transport through Lancaster Sound in the Canadian Arctic Archipelago

Toward high-resolution state estimation: SOSE An eddy permitting state estimation if the Southern Ocean (M. Mazloff)

■ 78° South to 24.7° South

■ 1/6⁰ horizontal resolution; 42 depth levels (partial cells)

atmospheric boundary layer scheme & sea-ice model

similar setup to ECCO-GODAE

adjoint generated via AD tool TAF

KPP, GM/Redi parameterizations

currently optimizing year 2005 to 2007

600 processor adjoint on SDSC's IBM SP4

See also presentation by D. Menemenlis, J21.35 at 11:30am

Outlook

- ECCO remains primarily directed at mechanistic understanding of climate variability from time-varying ocean state that is consistent with observations and known physics as a necessary prerequisite for prediction.
- Rigorous state estimation using most of the available observations is possible and scientifically useful. Studies so far included
 - Decadal variability in poleward heat and mass transports
 - Regional patterns of sea-level change
 - Driving of biological models with ECCO flow fields
- Application of adjoint and state estimation system should be extended for formal observing system design studies
- ECCO-GODAE now going fully global as coupled ocean/sea-ice system, with increased focus on high latitudes
- Move toward high resolution will continue, both globally (ECCO2), and regionally (Southern Ocean, North Atlantic & Arctic)

